Role of CodY in regulation of the Bacillus subtilis hut operon.

نویسندگان

  • S H Fisher
  • K Rohrer
  • A E Ferson
چکیده

Bacillus subtilis mutants deficient in amino acid repression of the histidine utilization (hut) operon were isolated by transposon mutagenesis. Genetic characterization of these mutants indicated that they most likely contained transposon insertions within the codVWXY operon. The codY gene is required for nutritional regulation of the dipeptide permease (dpp) operon. An examination of hut expression in a delta codY mutant demonstrated that amino acid repression exerted at the hutOA operator, which lies immediately downstream of the hut promoter, was defective in a delta codY mutant. The codY gene product was not required for amino acid regulation of either hut induction or the expression of proline oxidase, the first enzyme in proline degradation. This indicates that more than one mechanism of amino acid repression is present in B. subtilis. An examination of dpp and hut expression in cells during exponential growth in various media revealed that the level of CodY-dependent regulation appeared to be related to the growth rate of the culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.

Expression of the Bacillus subtilis hut operon is subject to regulation by catabolite repression. A set of hut-lacZ transcriptional fusions was constructed and used to identify two cis-acting sites involved in catabolite repression. The hutOCR1 operator site lies immediately downstream of the hut promoter and weakly regulates hut expression in response to catabolite repression. The downstream h...

متن کامل

Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis.

CodY is a global transcriptional regulator that is known to control directly the expression of at least two dozen operons in Bacillus subtilis, but the rules that govern the binding of CodY to its target DNA have been unclear. Using DNase I footprinting experiments, we identified CodY-binding sites upstream of the B. subtilis ylmA and yurP genes. The protected regions overlapped versions of a p...

متن کامل

Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP

The anti-termination protein, HutP, regulates the gene expression of the hut (histidine utilization) operon of Bacillus subtilis, by destabilizing the hut terminator RNA located upstream of the coding region encoding l-histidine degradation enzymes. On the basis of biochemical, in vivo and X-ray structural analyses, we now report that HutP uses its dual RNA-binding surfaces to access two XAG-ri...

متن کامل

Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis.

We found that a polycistronic operon (ywfBCDEFG) and a monocistronic gene (ywfH) are required for the biosynthesis of bacilysin in Bacillus subtilis. The disruption of these genes by plasmid integration caused loss of the ability to produce bacilysin, accompanied by a lack of bacilysin synthetase activity in the crude extract. We investigated the regulatory mechanism for bacilysin biosynthesis ...

متن کامل

Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids.

Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involvin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 178 13  شماره 

صفحات  -

تاریخ انتشار 1996